Urdu to English Machine Translation using Bilingual Evaluation Understudy

نویسندگان

  • Asad Abdul Malik
  • Asad Habib
چکیده

Machine Translation (MT) is exigent because it involves several thorny subtasks such as intrinsic language ambiguities, linguistic complexities and diversities between source and target language. Usually MT depends upon rules that provide linguistic information. At present, the corpus based MT approaches are used that include techniques like Example Based MT (EBMT) and Statistical MT (SMT). In addition to others, both of these corpus based techniques have different frameworks in the contemporary data-driven paradigm. SMT systems generate outputs using probabilities, whereas EBMT systems translate input text by matching examples from large amount of training data. Urdu MT is in its infancy with very limited availability of required data and computational resources. In this paper, we analyzed and evaluated the main MT techniques using qualitative as well as quantitative approaches. Strengths and weaknesses of each technique have been brought to light through special focus and discussion on examples from Urdu language MT literature. We evaluated the automated machine translated outputs using Bilingual Evaluation Understudy (BLEU). The EBMT approach produced the highest accuracy of 84.21% whereas the accuracy of the online SMT system is 62.68%. We found that BLUE scores of machine translated long Urdu sentences are low in comparison with long sentences. Similarly source text containing low frequency words affect the quality of Urdu machine translation negatively. Experiments and findings section of this paper explicate our reported results in detail. The paper concludes with proposal of future directions for research in Urdu machine translation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive English to Urdu Machine Translation using Example-Based Approach

This work is first attempt towards English to Urdu Machine Translation (MT) using example based approach. We have developed an interactive MT system to facilitate the user to customize the translation to his needs, thereby improving the performance of the translation. Our MT system supports idioms, homographs, and some other features in addition to the ability of the bilingual corpus to evolve....

متن کامل

Statistical Approach to Transliteration from English to Punjabi

-Machine transliteration plays an important role in natural language applications such as information retrieval and machine translation, especially for handling proper nouns and technical terms. Transliteration is a crucial factor in CLIR and MT. It is important for Machine Translation, especially when the languages do not use the same scripts. This paper addresses the issue of statistical mach...

متن کامل

Evaluating English to Arabic Machine Translation Using BLEU

This study aims to compare the effectiveness of two popular machine translation systems (Google Translate and Babylon machine translation system) used to translate English sentences into Arabic relative to the effectiveness of English to Arabic human translation. There are many automatic methods used to evaluate different machine translators, one of these methods; Bilingual Evaluation Understud...

متن کامل

Statistical pattern-based machine translation with statistical French-English machine translation

We developed a two-stage machine translation (MT) system. The first stage consists of an automatically created pattern-based machine translation system, and the second stage consists of a standard statistical machine translation (SMT) system. For French-English machine translation, we first used a French-English pattern-based MT, and we obtained ”English” sentences from French sentences. Second...

متن کامل

Enhanced Bilingual Evaluation Understudy

Our research extends the Bilingual Evaluation Understudy (BLEU) evaluation technique for statistical machine translation to make it more adjustable and robust. We intend to adapt it to resemble human evaluation more. We perform experiments to evaluate the performance of our technique against the primary existing evaluation methods. We describe and show the improvements it makes over existing me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013